Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells.
نویسندگان
چکیده
The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect of the light chains on Ca2+ induced catecholamine release. Dipicolinic acid, a strong chelating agent for zinc, also prevented the effect of the tetanus toxin light chain. Zn2+ and, less potently Cu2+ and Ni2+, but not Cd2+ and Co2+, restored the activity of the neurotoxin. These data show that zinc and the putative zinc binding domain constitute the active site of the tetanus toxin light chain. Neither captopril, an inhibitor of synaptobrevin cleavage nor peptides spanning the site of synaptobrevins cleaved by the tetanus toxin in neurons, prevented the inhibition of Ca2+ induced catecholamine release by the tetanus toxin light chain. This suggests that synaptobrevins are not a major target of tetanus toxin in adrenal chromaffin cells.
منابع مشابه
Isolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells.
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+-dependent secretion of [3H]norepinephrine from digitonin-permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with ...
متن کاملReductive chain separation of botulinum A toxin--a prerequisite to its inhibitory action on exocytosis in chromaffin cells.
Cleavage of the disulfide bond linking the heavy and the light chains of tetanus toxin is necessary for its inhibitory action on exocytotic release of catecholamines from permeabilized chromaffin cells [(1989) FEBS Lett. 242, 245-248; (1989) J. Neurochem., in press]. The related botulinum A toxin also consists of a heavy and a light chain linked by a disulfide bond. The actions of both neurotox...
متن کاملThe light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells.
The heavy and light chains of botulinum A toxin were separated by anion exchange chromatography. Their intracellular actions were studied using bovine adrenal chromaffin cells permeabilized with streptolysin O. Purified light chain inhibited the Ca2+-stimulated [3H]noradrenaline release with a half-maximal effect at about 1.8 nM. The inhibition was incomplete. Heavy chain up to 28 nM was neithe...
متن کاملSynaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells.
Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized...
متن کاملIntroduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O: inhibitory effect of tetanus toxin on catecholamine secretion.
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 336 1 شماره
صفحات -
تاریخ انتشار 1993